Добрый день, уважаемые читатели. Это третья часть статьи, посвящённой «утечке» конфиденциальных данных на примере больших языковых моделей, реализуемой посредством кибератак. В первых двух частях (раз и два) мы рассмотрели возможные причины и последствия таких атак. Также отдельно затронули их виды, детально остановились на механизмах и методах сбора и формирования наборов данных, их структуре и свойствах.
А здесь мы рассмотрим свойства получаемых графов знаний, а также инструменты для их отображения. Прежде всего, нас интересует получение графа знаний (раз и два) и верная его интерпретация, а также подбор инструмента, который бы объективно отражал граф и мог поддерживать очень быстрое масштабирование, ведь количество данных в модели постоянно растёт, а узлы постоянно мигрируют. Более того, как оказалось, они не статичны и могут быть подвержены слияниям, распадам и перетеканию в смежные области.
Все статьи подряд / Информационная безопасность / Хабр